Skip to main content

Dr. Gurcan is a Guest Editor for IEEE Transactions on Medical Imaging for special issue on Multivariate Microscopy Image Analysis

Analysis of microscopy images of samples has numerous applications in a wide range of areas such as molecular biology, life sciences, pharmacology and medicine. Recently, new protocols based on molecular labeling and imaging automation are spurring a revolution in microscopy techniques since they allow to capture the trans- or co-localization of proteins in multivariate microscopy image (MMI) data. In MMI, each pixel at a location may be associated with more than one intensity value, to an array of multiple intensities. These intensities can encode protein location, co-location or translocation over time, as seen by incident light of multiple wavelengths. In histopathology, for example, diagnosis and grading of cancer and other diseases can be improved by analyzing localization patterns in MMI obtained with multi-staining and/or multi-spectral techniques. As a consequence, there is a rapidly growing interest in the processing and analysis of MMI not only in the classic fields listed above but also in the new and rapidly evolving field of systems biology since the MMI data unfolds the spatial information on the molecular level that cannot be evaluated using the classic "omics" methods. Although there has been great progress in the development and application of image analysis in biomedicine over the recent years, there are a number of significant challenges involving the MMI data. These challenges include acquisition, efficient storage, registration, segmentation, classification, semantic annotation and visualization of the MMI data. Recent advances in other related areas such as image processing, computer vision, pattern recognition, and machine learning as well as the availability of high-performance computing equipment at a relatively affordable cost are seemingly fueling the development of computational methods to deal with these challenges.

(http://www.ieee-tmi.org/CallForPapers.html).

This Special Issue will highlight new research directions in Multivariate Microscopy Image Analysis by collecting selected papers in all relevant areas including, but not limited to, the following topics:


  • Registration, segmentation, classification, retrieval

  • Object detection/classification/quantification

  • Computer-aided diagnosis and grading

  • Visualization

  • System evaluation

  • Novel computational architectures

  • Other related aspects

Comments

Popular posts from this blog

CIALAB encouraging talented young minds with summer internships

CIALAB is pleased to introduce the three interns namely Tong Gan, Rosana Rodriguez Milanes and Michael Priddy working through summer’09. Rosana Rodriguez Milanes - I am a third year undergraduate student in Electronic Engineering from Universidad del Norte, Colombia. My experience as a volunteer foreign student in the Clinical Image Analysis Laboratory has been an edifying, gratifying and enriching. Being able to participate, to learn and to collaborate in the Clinical Image Analysis Laboratory during the past two weeks has allowed me to improve my analytical and interpretative skills in processing histopathological and MRI images. I have been able to learn about segmentation, region growing, splitting and merging algorithms development. I have also had the privilege of knowing and interacting with excellent engineers who have helped me improve my skills as a foreign student. I am grateful for the opportunity that the Ohio State University has given me to collaborate and to learn with...

Recent publications

The CIA lab has recently had 4 articles published in PLOS One and the Journal of Urology. Automated Staging Of T1 Bladder Cancer Using Digital Pathologic H&E Images: A Deep Learning approach (Journal of Urology). The paper discusses the need for accurately gauging tumor cell intrusion into Lamina Propria in an effort to substage bladder cancer. It explains how transfer learning in conjunction with Convolutional Neural Networks can be used to accurately identify different bladder layers and then compute the distance between tumor nuclei and Lamina Propria. The article is available here:  https://www.jurology.com/article/S0022-5347(18)41148-2/pdf Identifying tumor in pancreatic neuroendocrine neoplasms from Ki67 images using transfer learning (PLOS One). This paper examines a proposed methodology to automatically differentiate between NET and non-tumor regions based on images of Ki67 stained biopsies. It also uses transfer learning to exploit a rich set of features ...

CIALAB has moved to Wake Forest

The Clinical Image Analysis Lab (CIALAB) that was started by Dr. Metin Gurcan in 2005 at the Ohio State University has moved to Wake Forest School of Medicine. The new lab at Wake Forest will retain its name, but its web page will now be located at : http://tsi.wakehealth.edu/CIALab/   Dr. Gurcan was recruited as the inaugural Director of the Center for Biomedical Informatics at Wake Forest School of Medicine. The newly established Center will strengthen Wake Forest’s infrastructures for informatics research in genomics, imaging, healthcare delivery, and population health and support the informatics needs of other research centers. In so doing, the Center will promote Wake Forest Baptist Health's evolution as a learning health care system. A further goal of the Center is to train the next generation of investigators in the principles and practice of biomedical informatics.   The CIALab has been one of the leading research labs in the world and known for its innovative and ...