A method for the semi-automated segmentation of the meniscus in OAI images developed by the CIALAB Osteoarthritis Research Group has been accepted for publication in the Osteoarthritis and Cartilage Journal. The authors of the paper were Mark Swanson, a Medical Student with Roessler Scholarship, Jeff Prescott, an MD/PhD student in the lab, Thomas Best MD/PhD, Kimberly Powell, Rebecca Jackson MD, Furqan Haq PhD, and Metin Gurcan PhD. The abstract of the manuscript appears below.
Abstract:
Objective: The goal of this study was to develop an algorithm to semi-automatically segment the meniscus in a series of magnetic resonance (MR) images to use for normal knees and those with moderate osteoarthritis (OA).
Method: The segmentation method was developed then evaluated on 10 baseline magnetic resonance images obtained from subjects with no evidence, symptoms, or risk factors of knee (OA), and 14 from subjects with established knee OA enrolled in the Osteoarthritis Initiative (OAI). After manually choosing a seed point within the meniscus, a threshold level was calculated through a Gaussian fit model. Under anatomical, intensity, and range constraints, a threshold operation was completed followed by conditional dilation and post-processing. The post-processing operation reevaluates the pixels included and excluded in the area surrounding the meniscus to improve accuracy. The developed method was evaluated for both normal and degenerative menisci by comparing the segmentation algorithm results with manual segmentations from five human readers.
Results: The semi-automated segmentation method produces results similar to those of trained observers, with an average similarity index over 0.80 for normal participants and 0.75, 0.67, and 0.64 for participants with established knee osteoarthritis with Osteoarthritis Research International Society International (OARSI) joint space narrowing scores of 0,1, and 2 respectively.
Conclusion: The semi-automatic segmentation method produced accurate and consistent segmentations of the meniscus when compared to manual segmentations in the assessment of normal menisci in mild to moderate OA. Future studies will examine the change in volume, thickness, and intensity characteristics at different stages of OA.
Abstract:
Objective: The goal of this study was to develop an algorithm to semi-automatically segment the meniscus in a series of magnetic resonance (MR) images to use for normal knees and those with moderate osteoarthritis (OA).
Method: The segmentation method was developed then evaluated on 10 baseline magnetic resonance images obtained from subjects with no evidence, symptoms, or risk factors of knee (OA), and 14 from subjects with established knee OA enrolled in the Osteoarthritis Initiative (OAI). After manually choosing a seed point within the meniscus, a threshold level was calculated through a Gaussian fit model. Under anatomical, intensity, and range constraints, a threshold operation was completed followed by conditional dilation and post-processing. The post-processing operation reevaluates the pixels included and excluded in the area surrounding the meniscus to improve accuracy. The developed method was evaluated for both normal and degenerative menisci by comparing the segmentation algorithm results with manual segmentations from five human readers.
Results: The semi-automated segmentation method produces results similar to those of trained observers, with an average similarity index over 0.80 for normal participants and 0.75, 0.67, and 0.64 for participants with established knee osteoarthritis with Osteoarthritis Research International Society International (OARSI) joint space narrowing scores of 0,1, and 2 respectively.
Conclusion: The semi-automatic segmentation method produced accurate and consistent segmentations of the meniscus when compared to manual segmentations in the assessment of normal menisci in mild to moderate OA. Future studies will examine the change in volume, thickness, and intensity characteristics at different stages of OA.
Comments
Post a Comment