Skip to main content

OAI quadriceps segmentation work accepted for publication in the Journal of Digital Imaging

A method for the segmentation of the quadriceps muscles in OAI images developed by the CIALAB Osteoarthritis Research Group has been accepted for publication in the Journal of Digital Imaging. The authors of the paper were Jeff Prescott, an MD/PhD student in the lab, Thomas Best MD/PhD, Mark Swanson, Furqan Haq PhD, Rebecca Jackson MD, and Metin Gurcan PhD. The abstract of the manuscript appears below.

Abstract: In this paper we present a semi-automated segmentation method for magnetic resonance (MR) images of the quadriceps muscles. Our method uses an anatomically anchored, template-based initialization of the level set-based segmentation approach. The method only requires the input of a single point from the user inside the rectus femoris. The templates are quantitatively selected from a set of images based on modes in the patient population, namely sex and body type. For a given image to be segmented, a template is selected based on the smallest Kullback-Leibler divergence between the histograms of that image and the set of templates. The chosen template is then employed as an initialization for a level set segmentation, which captures individual anatomical variations in the image to be segmented. Images from 103 subjects were analyzed using the developed method. The algorithm was trained on a randomly selected subset of 50 subjects (25 men and 25 women) and tested on the remaining 53 subjects. The performance of the algorithm on the test set was compared against the ground truth using the Zijdenbos similarity index (ZSI). The average ZSI means and standard deviations against two different manual readers were: rectus femoris, 0.78 ± 0.12; vastus intermedius, 0.79 ± 0.10; vastus lateralis, 0.82 ± 0.08; vastus medialis, 0.69 ± 0.16.

Comments

Popular posts from this blog

Recent publications

The CIA lab has recently had 4 articles published in PLOS One and the Journal of Urology. Automated Staging Of T1 Bladder Cancer Using Digital Pathologic H&E Images: A Deep Learning approach (Journal of Urology). The paper discusses the need for accurately gauging tumor cell intrusion into Lamina Propria in an effort to substage bladder cancer. It explains how transfer learning in conjunction with Convolutional Neural Networks can be used to accurately identify different bladder layers and then compute the distance between tumor nuclei and Lamina Propria. The article is available here:  https://www.jurology.com/article/S0022-5347(18)41148-2/pdf Identifying tumor in pancreatic neuroendocrine neoplasms from Ki67 images using transfer learning (PLOS One). This paper examines a proposed methodology to automatically differentiate between NET and non-tumor regions based on images of Ki67 stained biopsies. It also uses transfer learning to exploit a rich set of features ...

Drs. Goceri, Kus, and Senaras Present at OSUMC Research Day

On April 25th, Drs. Goceri, Kus, and Senaras presented their research at the OSUMC Research Day.  Dr. Evgin Goceri presented “Automatic and Robust Segmentation of Liver and Its Vessels from MR Datasets for Pre-Evaluation of Liver Translation” which proposed a robust and fully automated method for segmenting the liver and its vessels from MR images. Dr. Goceri’s study presented a novel approach to reducing processing time by employing binary regularization of the level set function. The fully-automatic segmentation of liver and its vessels with the proposed method was more efficient than manual approach and the other methods in the literature in terms of processing time and accuracy. Dr. Pelin Kus presented “Segmentation and Quantification of Tissue Necrosis in Tuberculosis” which focuses on how the immune system of patients infected with M. tuberculosis responds by using many types of cells including macrophages that form granulomas within the pulmonary tissue. Segmentati...

Computer’s help in wound image analysis

Computers help in wound image analysis CIALAB’s work in collaboration with the OSUMC Wound Center researchers entitled, “ Computerized Segmentation and Measurement of Chronic Wound Images” has been accepted to the journal of Computers in Biology and Medicine (CBM). The objective of this study is to develop methods to segment, measure and characterize clinically presented chronic wounds from photographic images. The methods were applied to 80 wound images, captured in a clinical setting at the Ohio State University Comprehensive Wound Center, with the ground truth independently generated by the consensus of at least two clinicians. Further details about the paper can be found at the CBM website: www.computersinbiologyandmedicine.com/article/S0010-4825(15)00064-5/abstract