Skip to main content

OSU President Dr. Gee honors CIALAB scholar

The 4th Annual International Scholar Research Exposition Opening Reception took place in Bricker Hall on November 19, 2009 at The Ohio State University. Posters documenting the research efforts of visiting scholars are on display throughout November and December in the 2nd Floor Lobby of Bricker Hall.

Dr. Ahmet Alkan, an international scholar from Turkey, working at the CIALAB presented a poster at the exposition. The poster’s title is “Computerized Image Analysis of Thigh Muscles for Osteoarthritis.” President Gee and Dr. Whitacre, vice president for research, honored Dr. Alkan with a certificate.

Ahmet Alkan received his Ph.D. in Electrical & Electronics Engineering from Sakarya University in 2005. He is funded by a fellowship from The Scientific and Technological Research Council of Turkey (TÜBİTAK) in 2009. He is currently a visiting scholar in the Department of Biomedical Informatics at The Ohio State University, working with Dr. Metin N. Gurcan. His research interests include Signal Processing, Artificial Neural Networks and Biomedical Image Processing. He is an Assistant Professor in the Department of Electrical & Electronics Engineering at Kahramanmaras Sutcu Imam University/Turkey.

Comments

Popular posts from this blog

Recent publications

The CIA lab has recently had 4 articles published in PLOS One and the Journal of Urology. Automated Staging Of T1 Bladder Cancer Using Digital Pathologic H&E Images: A Deep Learning approach (Journal of Urology). The paper discusses the need for accurately gauging tumor cell intrusion into Lamina Propria in an effort to substage bladder cancer. It explains how transfer learning in conjunction with Convolutional Neural Networks can be used to accurately identify different bladder layers and then compute the distance between tumor nuclei and Lamina Propria. The article is available here:  https://www.jurology.com/article/S0022-5347(18)41148-2/pdf Identifying tumor in pancreatic neuroendocrine neoplasms from Ki67 images using transfer learning (PLOS One). This paper examines a proposed methodology to automatically differentiate between NET and non-tumor regions based on images of Ki67 stained biopsies. It also uses transfer learning to exploit a rich set of features ...

Drs. Goceri, Kus, and Senaras Present at OSUMC Research Day

On April 25th, Drs. Goceri, Kus, and Senaras presented their research at the OSUMC Research Day.  Dr. Evgin Goceri presented “Automatic and Robust Segmentation of Liver and Its Vessels from MR Datasets for Pre-Evaluation of Liver Translation” which proposed a robust and fully automated method for segmenting the liver and its vessels from MR images. Dr. Goceri’s study presented a novel approach to reducing processing time by employing binary regularization of the level set function. The fully-automatic segmentation of liver and its vessels with the proposed method was more efficient than manual approach and the other methods in the literature in terms of processing time and accuracy. Dr. Pelin Kus presented “Segmentation and Quantification of Tissue Necrosis in Tuberculosis” which focuses on how the immune system of patients infected with M. tuberculosis responds by using many types of cells including macrophages that form granulomas within the pulmonary tissue. Segmentati...

Computer’s help in wound image analysis

Computers help in wound image analysis CIALAB’s work in collaboration with the OSUMC Wound Center researchers entitled, “ Computerized Segmentation and Measurement of Chronic Wound Images” has been accepted to the journal of Computers in Biology and Medicine (CBM). The objective of this study is to develop methods to segment, measure and characterize clinically presented chronic wounds from photographic images. The methods were applied to 80 wound images, captured in a clinical setting at the Ohio State University Comprehensive Wound Center, with the ground truth independently generated by the consensus of at least two clinicians. Further details about the paper can be found at the CBM website: www.computersinbiologyandmedicine.com/article/S0010-4825(15)00064-5/abstract