Skip to main content

Jeff Prescott has received his PhD in Biomedical Engineering.

Thesis Title: Computer-Assisted Discovery and Characterization of Imaging Biomarkers for Disease Diagnosis and Treatment Planning

Abstract:

The rapid growth of diagnostic medical imaging studies has led to enormous strides in the effective diagnosis and treatment of myriad diseases, from chronic diseases to life threatening cancers. The rise of imaging as a major factor in medical decision making has directly led to a drive towards quantification of image findings, in order to augment the qualitative analysis of trained medical professionals, such as radiologists. The overarching goal of this dissertation is to explore, develop, and evaluate imaging biomarkers for both chronic and life threatening diseases. Towards this goal, this dissertation has the following two aims:

1. Discover and characterize imaging biomarkers for diseases which may have either acute/sub-acute presentation or treatment, or diseases which may have a more chronic course and treatment intervention. The former analysis is focused on the case of cervical cancer, and the latter is focused on osteoarthritis (OA).

2. Apply digital image processing methods to the acquired images which leverage the spatial information in the images to characterize the anatomy, physiology, and pathophysiology of a disease process.

These aims were designed to improve the characterization of human disease by extracting quantifiable information from the acquired medical images. For the case of cervical cancer, analyses were undertaken of higher order statistics and texture measures as features to be used in the classification of cervical cancer tumor volumes in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) as either likely to recur or be controlled after treatment. The contributions of these analyses are:

1. A physiologically-meaningful measure of tumor vascularity by using the wavelet decomposition to quantify texture, which predicts the outcome of radiation treatment at two-year post-treatment follow-up with 100% accuracy, based on early treatment DCE-MRI studies of the tumor.

2. The demonstration of texture measures as more important than change in tumor volume for accurate treatment outcome prediction.

For the case of OA, analyses were undertaken of the quadriceps muscle morphology (cross-sectional area (CSA)) and content (intramuscular adipose tissue (IAT)), femur morphology, and meniscus morphology (volume) on MRI as potential biomarkers for OA severity. The analyses of the quadriceps muscle and the femur were further pursued through the development of semi-automated and automated segmentation procedures. The findings and contributions of these analyses are:

1. The association of the CSA of a particular muscle in the quadriceps, the vastus intermedius, with a reduced risk of more severe radiographic OA.

2. The finding that quadriceps lean muscle CSA (anatomical muscle CSA minus IAT) is associated with sex, age, and BMI, which are risk factors for OA.

3. The volume of the lateral meniscus has multiple significant associations with the volume of the tibial articular cartilage in subjects with OA.

4. The development of an image enhancement procedure which standardizes the intensities in MRI images between all subjects and allows for the efficient and accurate structure segmentation and imaging biomarker calculation.

5. The development of a semi-automated segmentation algorithm for the individual quadriceps muscles, using atlases and level set contour evolution.

6. A comparison of atlas segmentation procedures, demonstrating that the use of multiple atlases is superior to the use of “representative” atlases selected by a trained human reader.
The use of medical imaging allows for the non-invasive localization and characterization of disease, which is especially important for diseases which have significant short-term mortality (such as cancer) or long-term morbidity (such as OA). By studying diseases at these two ends of the spectrum, a unique understanding of the imaging biomarker development and evaluation process can be gained. In addition, the application of digital image processing methods can improve the characterization of the imaging manifestations of disease by providing consistent, accurate, and complicated quantification techniques, which may be difficult, or impossible, for human readers to provide.

Comments

Popular posts from this blog

CIALAB encouraging talented young minds with summer internships

CIALAB is pleased to introduce the three interns namely Tong Gan, Rosana Rodriguez Milanes and Michael Priddy working through summer’09. Rosana Rodriguez Milanes - I am a third year undergraduate student in Electronic Engineering from Universidad del Norte, Colombia. My experience as a volunteer foreign student in the Clinical Image Analysis Laboratory has been an edifying, gratifying and enriching. Being able to participate, to learn and to collaborate in the Clinical Image Analysis Laboratory during the past two weeks has allowed me to improve my analytical and interpretative skills in processing histopathological and MRI images. I have been able to learn about segmentation, region growing, splitting and merging algorithms development. I have also had the privilege of knowing and interacting with excellent engineers who have helped me improve my skills as a foreign student. I am grateful for the opportunity that the Ohio State University has given me to collaborate and to learn with...

Recent publications

The CIA lab has recently had 4 articles published in PLOS One and the Journal of Urology. Automated Staging Of T1 Bladder Cancer Using Digital Pathologic H&E Images: A Deep Learning approach (Journal of Urology). The paper discusses the need for accurately gauging tumor cell intrusion into Lamina Propria in an effort to substage bladder cancer. It explains how transfer learning in conjunction with Convolutional Neural Networks can be used to accurately identify different bladder layers and then compute the distance between tumor nuclei and Lamina Propria. The article is available here:  https://www.jurology.com/article/S0022-5347(18)41148-2/pdf Identifying tumor in pancreatic neuroendocrine neoplasms from Ki67 images using transfer learning (PLOS One). This paper examines a proposed methodology to automatically differentiate between NET and non-tumor regions based on images of Ki67 stained biopsies. It also uses transfer learning to exploit a rich set of features ...

CIALAB has moved to Wake Forest

The Clinical Image Analysis Lab (CIALAB) that was started by Dr. Metin Gurcan in 2005 at the Ohio State University has moved to Wake Forest School of Medicine. The new lab at Wake Forest will retain its name, but its web page will now be located at : http://tsi.wakehealth.edu/CIALab/   Dr. Gurcan was recruited as the inaugural Director of the Center for Biomedical Informatics at Wake Forest School of Medicine. The newly established Center will strengthen Wake Forest’s infrastructures for informatics research in genomics, imaging, healthcare delivery, and population health and support the informatics needs of other research centers. In so doing, the Center will promote Wake Forest Baptist Health's evolution as a learning health care system. A further goal of the Center is to train the next generation of investigators in the principles and practice of biomedical informatics.   The CIALab has been one of the leading research labs in the world and known for its innovative and ...