Skip to main content

Research accepted for publication in special issue of IEEE Transactions on Biomedical Engineering

CIALAB research on developing an automated computer-assisted system for follicular lymphoma grading has been accepted for publication in IEEE Transactions on Biomedical Engineering's forthcoming special issue on Multi-Parameter Optical Imaging and Image Analysis. Information regarding the publication is below:

Title: Computer-aided Detection of Centroblasts for Follicular Lymphoma Grading using Adaptive Likelihood based Cell Segmentation

Authors: Sertel O, Lozanski G, Shana'ah A, Gurcan MN

Abstract: Follicular lymphoma (FL), is one of the most common lymphoid malignancies in the western world. FL has a variable clinical course and important clinical treatment decisions for FL patients are based on histological grading, which is done by manually counting the large malignant cells called centroblasts (CB) in ten standard microscopic high power fields from H&E-stained tissue sections. This method is tedious and subjective; as a result suffers from considerable inter- and intra-reader variability even when used by expert pathologists. In this study, we present a computer-aided detection system for automated identification of CB cells from H&E-stained FL tissue samples. The proposed system uses a unitone conversion to obtain a single channel image that has the highest contrast. From the resulting image, which has a bi-modal distribution due to the H&E-stain, a cell-likelihood image is generated. Finally, a two-step CB detection procedure is applied. In the first step, we reduce evident non-CB cells based on size and shape. In the second step CB detection is further refined by learning and utilizing the texture distribution of non-CB cells. We evaluated the proposed approach on 100 region of interest images extracted from ten distinct tissue samples and obtained a promising 80.7% detection accuracy.

Comments

Popular posts from this blog

Recent publications

The CIA lab has recently had 4 articles published in PLOS One and the Journal of Urology. Automated Staging Of T1 Bladder Cancer Using Digital Pathologic H&E Images: A Deep Learning approach (Journal of Urology). The paper discusses the need for accurately gauging tumor cell intrusion into Lamina Propria in an effort to substage bladder cancer. It explains how transfer learning in conjunction with Convolutional Neural Networks can be used to accurately identify different bladder layers and then compute the distance between tumor nuclei and Lamina Propria. The article is available here:  https://www.jurology.com/article/S0022-5347(18)41148-2/pdf Identifying tumor in pancreatic neuroendocrine neoplasms from Ki67 images using transfer learning (PLOS One). This paper examines a proposed methodology to automatically differentiate between NET and non-tumor regions based on images of Ki67 stained biopsies. It also uses transfer learning to exploit a rich set of features ...

Drs. Goceri, Kus, and Senaras Present at OSUMC Research Day

On April 25th, Drs. Goceri, Kus, and Senaras presented their research at the OSUMC Research Day.  Dr. Evgin Goceri presented “Automatic and Robust Segmentation of Liver and Its Vessels from MR Datasets for Pre-Evaluation of Liver Translation” which proposed a robust and fully automated method for segmenting the liver and its vessels from MR images. Dr. Goceri’s study presented a novel approach to reducing processing time by employing binary regularization of the level set function. The fully-automatic segmentation of liver and its vessels with the proposed method was more efficient than manual approach and the other methods in the literature in terms of processing time and accuracy. Dr. Pelin Kus presented “Segmentation and Quantification of Tissue Necrosis in Tuberculosis” which focuses on how the immune system of patients infected with M. tuberculosis responds by using many types of cells including macrophages that form granulomas within the pulmonary tissue. Segmentati...

Computer’s help in wound image analysis

Computers help in wound image analysis CIALAB’s work in collaboration with the OSUMC Wound Center researchers entitled, “ Computerized Segmentation and Measurement of Chronic Wound Images” has been accepted to the journal of Computers in Biology and Medicine (CBM). The objective of this study is to develop methods to segment, measure and characterize clinically presented chronic wounds from photographic images. The methods were applied to 80 wound images, captured in a clinical setting at the Ohio State University Comprehensive Wound Center, with the ground truth independently generated by the consensus of at least two clinicians. Further details about the paper can be found at the CBM website: www.computersinbiologyandmedicine.com/article/S0010-4825(15)00064-5/abstract