Skip to main content

Research accepted for publication in special issue of IEEE Transactions on Biomedical Engineering

CIALAB research on developing an automated computer-assisted system for follicular lymphoma grading has been accepted for publication in IEEE Transactions on Biomedical Engineering's forthcoming special issue on Multi-Parameter Optical Imaging and Image Analysis. Information regarding the publication is below:

Title: Computer-aided Detection of Centroblasts for Follicular Lymphoma Grading using Adaptive Likelihood based Cell Segmentation

Authors: Sertel O, Lozanski G, Shana'ah A, Gurcan MN

Abstract: Follicular lymphoma (FL), is one of the most common lymphoid malignancies in the western world. FL has a variable clinical course and important clinical treatment decisions for FL patients are based on histological grading, which is done by manually counting the large malignant cells called centroblasts (CB) in ten standard microscopic high power fields from H&E-stained tissue sections. This method is tedious and subjective; as a result suffers from considerable inter- and intra-reader variability even when used by expert pathologists. In this study, we present a computer-aided detection system for automated identification of CB cells from H&E-stained FL tissue samples. The proposed system uses a unitone conversion to obtain a single channel image that has the highest contrast. From the resulting image, which has a bi-modal distribution due to the H&E-stain, a cell-likelihood image is generated. Finally, a two-step CB detection procedure is applied. In the first step, we reduce evident non-CB cells based on size and shape. In the second step CB detection is further refined by learning and utilizing the texture distribution of non-CB cells. We evaluated the proposed approach on 100 region of interest images extracted from ten distinct tissue samples and obtained a promising 80.7% detection accuracy.

Comments

Popular posts from this blog

CIALAB encouraging talented young minds with summer internships

CIALAB is pleased to introduce the three interns namely Tong Gan, Rosana Rodriguez Milanes and Michael Priddy working through summer’09. Rosana Rodriguez Milanes - I am a third year undergraduate student in Electronic Engineering from Universidad del Norte, Colombia. My experience as a volunteer foreign student in the Clinical Image Analysis Laboratory has been an edifying, gratifying and enriching. Being able to participate, to learn and to collaborate in the Clinical Image Analysis Laboratory during the past two weeks has allowed me to improve my analytical and interpretative skills in processing histopathological and MRI images. I have been able to learn about segmentation, region growing, splitting and merging algorithms development. I have also had the privilege of knowing and interacting with excellent engineers who have helped me improve my skills as a foreign student. I am grateful for the opportunity that the Ohio State University has given me to collaborate and to learn with...

Recent publications

The CIA lab has recently had 4 articles published in PLOS One and the Journal of Urology. Automated Staging Of T1 Bladder Cancer Using Digital Pathologic H&E Images: A Deep Learning approach (Journal of Urology). The paper discusses the need for accurately gauging tumor cell intrusion into Lamina Propria in an effort to substage bladder cancer. It explains how transfer learning in conjunction with Convolutional Neural Networks can be used to accurately identify different bladder layers and then compute the distance between tumor nuclei and Lamina Propria. The article is available here:  https://www.jurology.com/article/S0022-5347(18)41148-2/pdf Identifying tumor in pancreatic neuroendocrine neoplasms from Ki67 images using transfer learning (PLOS One). This paper examines a proposed methodology to automatically differentiate between NET and non-tumor regions based on images of Ki67 stained biopsies. It also uses transfer learning to exploit a rich set of features ...

BMI researchers to receive prestigious Intramural Award

BMI researcher Metin Gurcan, PhD (Professor, Director of Division of Clinical and Translational Informatics) in collaboration with Anil Parwani, MD, PhD, MBA (Vice Chair of Pathology) and Cheryl Lee, MD (Chair of Urology) have been awarded one of the prestigious OSU Comprehensive Cancer Center Intramural Research Funding Awards. The research team for the project also includes Soledad Fernandez, PhD (BMI), Nancy Single (CCC), Khalid Niazi, PhD (BMI) and Brett Klamer, MS (BMI).   The two-year project, entitled Application of image analysis tools to accurately stage and risk stratify patients with T1 bladder cancer, will be primarily funded by Pelotonia dollars. Pelotonia is a three-day bike tour organized every year in Columbus to raise money for cancer research with one goal: “End Cancer.” Every rider-raised dollar goes to fund research at The Ohio State University Comprehensive Cancer Center. Bladder cancer is an important disease that affects nearly 77,000 people annuall...