Skip to main content

New Computer-aided Follicular Lymphoma Image Analysis Research Publications

Two papers from the CIALAB have been accepted for publication in the IEEE Transactions on Medical Imaging and Computerized Medical Imaging and Graphics. The abstracts are below.


Partitioning Histopathological Images: An Integrated Framework for Supervised Color-Texture Segmentation and Cell Splitting

Kong, H.; Gurcan, M.; Belkacem-Boussaid, K.;

ABSTRACT

For quantitative analysis of histopathological images, such as the lymphoma grading systems, quantification of features is usually carried out on single cells before categorizing them by classification algorithms. To this end, we propose an integrated framework consisting of a novel supervised cell-image segmentation algorithm and a new touching-cell splitting method. For the segmentation part, we segment the cell regions from the other areas by classifying the image pixels into either cell or extra-cellular category. Instead of using pixel color intensities, the color-texture extracted at the local neighborhood of each pixel is utilized as the input to our classification algorithm. The color-texture at each pixel is extracted by local Fourier transform (LFT) from a new color space, the most discriminant color space (.. ). The .. color space is optimized to be a linear combination of the original RGB color space so that the extracted LFT texture features in the .. color space can achieve most discrimination in terms of classification (segmentation) performance. To speed up the texture feature extraction process, we develop an efficient LFT extraction algorithm based on image shifting and image integral. For the splitting part, given a connected component of the segmentation map, we initially differentiate whether it is a touching cell clump or a single non-touching cell. The differentiation is mainly based on the distance between the most likely radial symmetry center and the geometrical center of the connected component. The boundaries of touching-cell clumps are smoothed out by Fourier shape descriptor before carrying out an iterative, concave-point and radial-symmetry based splitting algorithm. To test the validity, effectiveness and efficiency of the framework, it is applied to follicular lymphoma pathological images, which exhibit complex background and extracellular texture with non-uniform illumination condition. For comparison purposes, the results of the proposed segmentation algorithm are evaluated against the outputs of Super-pixel, Graph-Cut, Mean-shift, and two state-of-the-art pathological image segmentation methods using ground-truth that was established by manual segmentation of cells in the original images. Our segmentation algorithm achieves better results than the other compared methods. The results of splitting are evaluated in terms of under-splitting, over-splitting, and encroachment errors. By summing up the three types of errors, we achieve a total error rate of 5.25% per image.




Automatic detection of follicular regions in H&E images using iterative shape index

Belkacem-Boussai, K.; Samsi, S.; Lozanski, G.; Gurcan,M.N.;

ABSTRACT

Follicular Lymphoma (FL) accounts for 20–25% of non-Hodgkin lymphomas in the United States. The first step in grading FL is identifying follicles. Our paper discusses a novel technique to segment follicular regions in H&E stained images. The method is based on three successive steps: (1) region-based segmentation, (2) iterative shape index (concavity index) calculation, (3) and recursive watershed. A novel aspect of this method is the use of iterative Concavity Index (CI) to control the follicular splitting process in recursive watershed. CI takes into consideration the convex hull of the object and the closest area surrounding it. The mean Zijbendos similarity index (ZSI) final segmentation score on fifteen cases was 78.33%, with a standard deviation of 2.83.

Comments

Popular posts from this blog

CIALAB encouraging talented young minds with summer internships

CIALAB is pleased to introduce the three interns namely Tong Gan, Rosana Rodriguez Milanes and Michael Priddy working through summer’09. Rosana Rodriguez Milanes - I am a third year undergraduate student in Electronic Engineering from Universidad del Norte, Colombia. My experience as a volunteer foreign student in the Clinical Image Analysis Laboratory has been an edifying, gratifying and enriching. Being able to participate, to learn and to collaborate in the Clinical Image Analysis Laboratory during the past two weeks has allowed me to improve my analytical and interpretative skills in processing histopathological and MRI images. I have been able to learn about segmentation, region growing, splitting and merging algorithms development. I have also had the privilege of knowing and interacting with excellent engineers who have helped me improve my skills as a foreign student. I am grateful for the opportunity that the Ohio State University has given me to collaborate and to learn with

Recent publications

The CIA lab has recently had 4 articles published in PLOS One and the Journal of Urology. Automated Staging Of T1 Bladder Cancer Using Digital Pathologic H&E Images: A Deep Learning approach (Journal of Urology). The paper discusses the need for accurately gauging tumor cell intrusion into Lamina Propria in an effort to substage bladder cancer. It explains how transfer learning in conjunction with Convolutional Neural Networks can be used to accurately identify different bladder layers and then compute the distance between tumor nuclei and Lamina Propria. The article is available here:  https://www.jurology.com/article/S0022-5347(18)41148-2/pdf Identifying tumor in pancreatic neuroendocrine neoplasms from Ki67 images using transfer learning (PLOS One). This paper examines a proposed methodology to automatically differentiate between NET and non-tumor regions based on images of Ki67 stained biopsies. It also uses transfer learning to exploit a rich set of features developed

Drs. Goceri, Kus, and Senaras Present at OSUMC Research Day

On April 25th, Drs. Goceri, Kus, and Senaras presented their research at the OSUMC Research Day.  Dr. Evgin Goceri presented “Automatic and Robust Segmentation of Liver and Its Vessels from MR Datasets for Pre-Evaluation of Liver Translation” which proposed a robust and fully automated method for segmenting the liver and its vessels from MR images. Dr. Goceri’s study presented a novel approach to reducing processing time by employing binary regularization of the level set function. The fully-automatic segmentation of liver and its vessels with the proposed method was more efficient than manual approach and the other methods in the literature in terms of processing time and accuracy. Dr. Pelin Kus presented “Segmentation and Quantification of Tissue Necrosis in Tuberculosis” which focuses on how the immune system of patients infected with M. tuberculosis responds by using many types of cells including macrophages that form granulomas within the pulmonary tissue. Segmentation a